The Numerical Solution of First - Kind Logarithmic - Kernel Integral Equations on Smooth Open Arcs
نویسنده
چکیده
Consider solving the Dirichlet problem Au(P) = o, Pem2\s, u(P) = h(P), Pes, sup \u(P)\ < CO, Pes2 with S a smooth open curve in the plane. We use single-layer potentials to construct a solution u(P). This leads to the solution of equations of the form j g(Q)\og\P-Q\dS(Q) = h(P), PeS. This equation is reformulated using a special change of variable, leading to a new first-kind equation with a smooth solution function. This new equation is split into a principal part, which is explicitly invertible, and a compact perturbation. Then a discrete Galerkin method that takes special advantage of the splitting of the integral equation is used to solve the equation numerically. A complete convergence analysis is given; numerical examples conclude the paper.
منابع مشابه
NUMERICAL APPROACH TO SOLVE SINGULAR INTEGRAL EQUATIONS USING BPFS AND TAYLOR SERIES EXPANSION
In this paper, we give a numerical approach for approximating the solution of second kind Volterra integral equation with Logarithmic kernel using Block Pulse Functions (BPFs) and Taylor series expansion. Also, error analysis shows efficiency and applicability of the presented method. Finally, some numerical examples with exact solution are given.
متن کاملSolving integral equations of the third kind in the reproducing kernel space
A reproducing kernel Hilbert space restricts the space of functions to smooth functions and has structure for function approximation and some aspects in learning theory. In this paper, the solution of an integral equation of the third kind is constructed analytically using a new method. The analytical solution is represented in the form of series in the reproducing kernel space. Some numerical ...
متن کاملSolving Volterra Integral Equations of the Second Kind with Convolution Kernel
In this paper, we present an approximate method to solve the solution of the second kind Volterra integral equations. This method is based on a previous scheme, applied by Maleknejad et al., [K. Maleknejad and Aghazadeh, Numerical solution of Volterra integral equations of the second kind with convolution kernel by using Taylor-series expansion method, Appl. Math. Comput. (2005)] to gain...
متن کاملCAS WAVELET METHOD FOR THE NUMERICAL SOLUTION OF BOUNDARY INTEGRAL EQUATIONS WITH LOGARITHMIC SINGULAR KERNELS
In this paper, we present a computational method for solving boundary integral equations with loga-rithmic singular kernels which occur as reformulations of a boundary value problem for the Laplacian equation. Themethod is based on the use of the Galerkin method with CAS wavelets constructed on the unit interval as basis.This approach utilizes the non-uniform Gauss-Legendre quadrature rule for ...
متن کاملA Method to Approximate Solution of the First Kind Abel Integral Equation Using Navot's Quadrature and Simpson's Rule
In this paper, we present a method for solving the rst kind Abel integral equation. In thismethod, the rst kind Abel integral equation is transformed to the second kind Volterraintegral equation with a continuous kernel and a smooth deriving term expressed by weaklysingular integrals. By using Sidi's sinm - transformation and modied Navot-Simpson'sintegration rule, an algorithm for solving this...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010